Engineering super mycovirus donor strains of chestnut blight fungus by systematic disruption of multilocus vic genes.
نویسندگان
چکیده
Transmission of mycoviruses that attenuate virulence (hypovirulence) of pathogenic fungi is restricted by allorecognition systems operating in their fungal hosts. We report the use of systematic molecular gene disruption and classical genetics for engineering fungal hosts with superior virus transmission capabilities. Four of five diallelic virus-restricting allorecognition [vegetative incompatibility (vic)] loci were disrupted in the chestnut blight fungus Cryphonectria parasitica using an adapted Cre-loxP recombination system that allowed excision and recycling of selectable marker genes (SMGs). SMG-free, quadruple vic mutant strains representing both allelic backgrounds of the remaining vic locus were then produced through mating. In combination, these super donor strains were able to transmit hypoviruses to strains that were heteroallelic at one or all of the virus-restricting vic loci. These results demonstrate the feasibility of modulating allorecognition to engineer pathogenic fungi for more efficient transmission of virulence-attenuating mycoviruses and enhanced biological control potential.
منابع مشابه
Vegetative incompatibility loci with dedicated roles in allorecognition restrict mycovirus transmission in chestnut blight fungus.
Vegetative incompatibility (vic), a form of nonself allorecognition, operates widely in filamentous fungi and restricts transmission of virulence-attenuating hypoviruses in the chestnut blight fungus Cryphonectria parasitica. We report here the use of a polymorphism-based comparative genomics approach to complete the molecular identification of the genetically defined C. parasitica vic loci wit...
متن کاملCharacterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an inducible DCL-2-dependent pathway.
The disruption of one of two dicer genes, dcl-2, of the chestnut blight fungus Cryphonectria parasitica was recently shown to increase susceptibility to mycovirus infection (G. C. Segers, X. Zhang, F. Deng, Q. Sun, and D. L. Nuss, Proc. Natl. Acad. Sci. USA 104:12902-12906, 2007). We now report the accumulation of virus-derived small RNAs (vsRNAs) in hypovirus CHV1-EP713-infected wild-type and ...
متن کاملMolecular Characterization of Vegetative Incompatibility Genes That Restrict Hypovirus Transmission in the Chestnut Blight Fungus Cryphonectria parasitica
Genetic nonself recognition systems such as vegetative incompatibility operate in many filamentous fungi to regulate hyphal fusion between genetically dissimilar individuals and to restrict the spread of virulence-attenuating mycoviruses that have potential for biological control of pathogenic fungi. We report here the use of a comparative genomics approach to identify seven candidate polymorph...
متن کاملGenetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica.
Vegetative incompatibility in fungi has long been known to reduce the transmission of viruses between individuals, but the barrier to transmission is incomplete. In replicated laboratory assays, we showed conclusively that the transmission of viruses between individuals of the chestnut blight fungus Cryphonectria parasitica is controlled primarily by vegetative incompatibility (vic) genes. By r...
متن کاملHypovirus molecular biology: from Koch's postulates to host self-recognition genes that restrict virus transmission.
The idea that viruses can be used to control fungal diseases has been a driving force in mycovirus research since the earliest days. Viruses in the family Hypoviridae associated with reduced virulence (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica, have held a prominent place in this research. This has been due in part to the severity of the chestnut blight epidemics in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 8 شماره
صفحات -
تاریخ انتشار 2016